

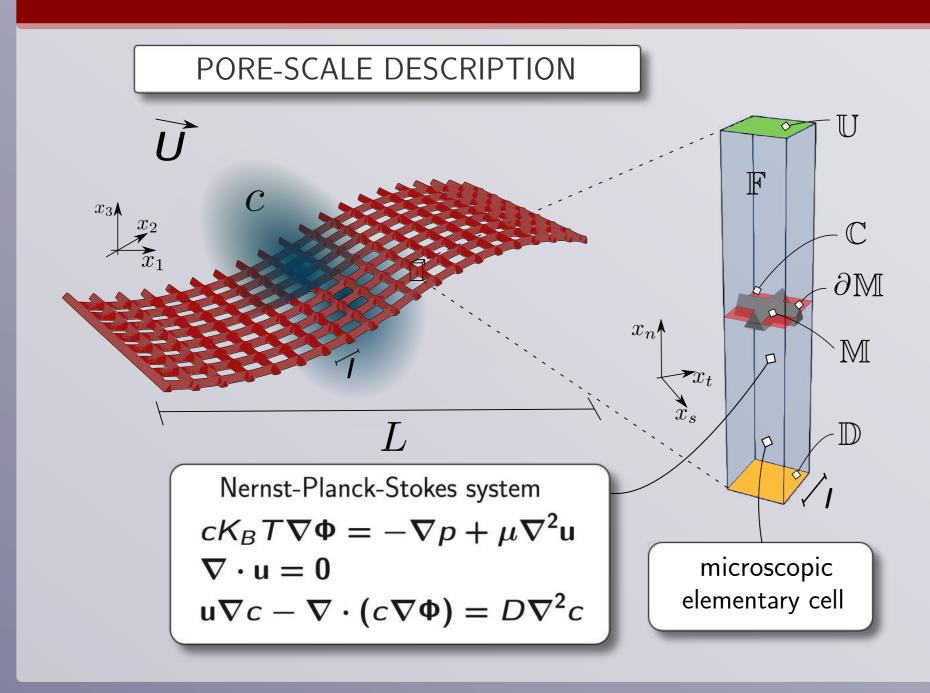
From pore- to membrane-scale filtration: EPEL a homogenization perspective

Swiss National Science Foundation

Giuseppe A. Zampogna, P.G. Ledda, K. Wittkowski, F. Gallaire

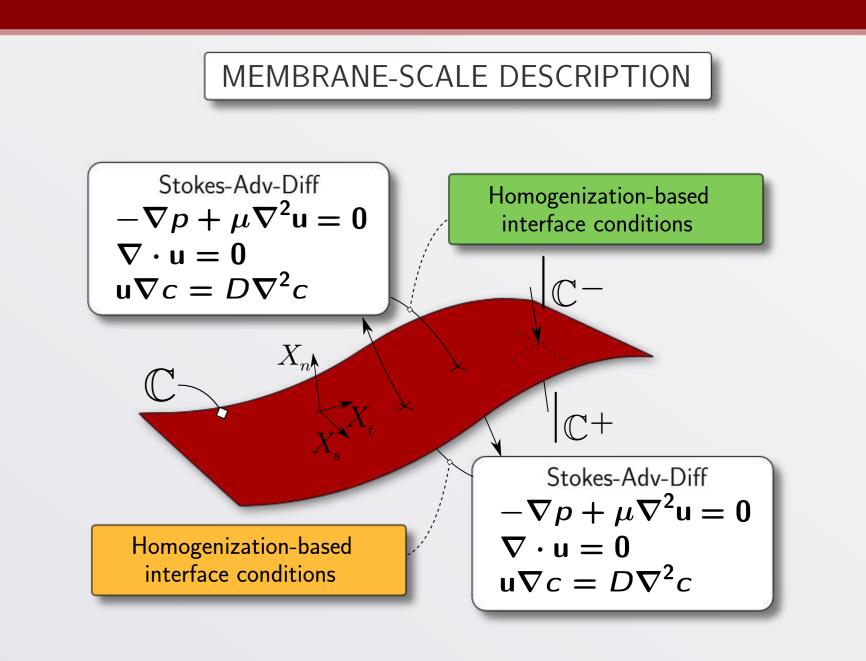
EPFL-STI-IGM-LFMI

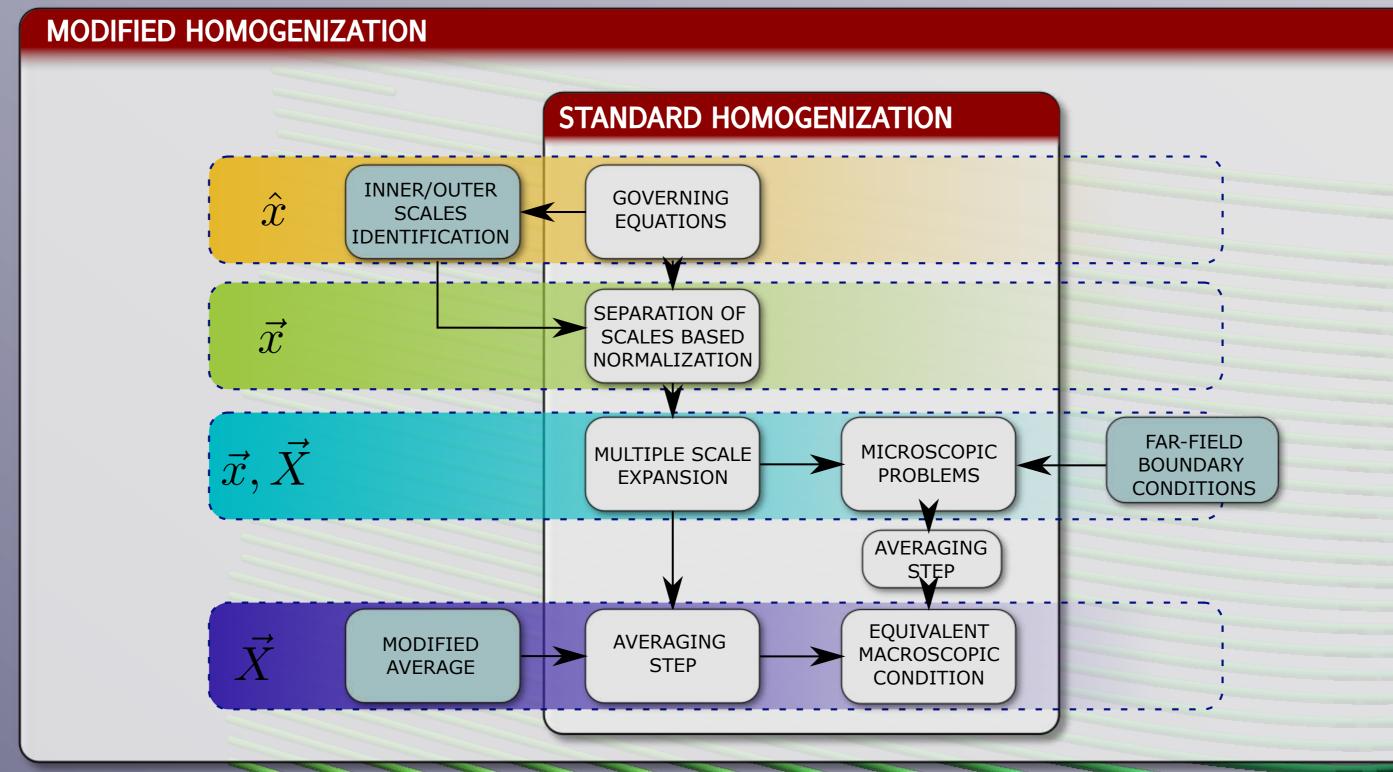
A powerful tool for membrane flows modelling: multiscale homogenization



Osmotic flow of a solvent of density ho and viscosity μ and a solute of diffusivity D through a thin porous structure of chemical potential $K_B T \Phi$ via the Nernst-Planck-Stokes system. Homogenization works like a selective magnification lens and provides interface conditions valid on a fictitious macroscopic membrane \mathbb{C} .

HOMOGENIZATION





Effective stress and flux jump conditions

The solvent velocity and pressure, and solute concentration fields, \mathbf{u} , \mathbf{p} and \mathbf{c} , satisfy

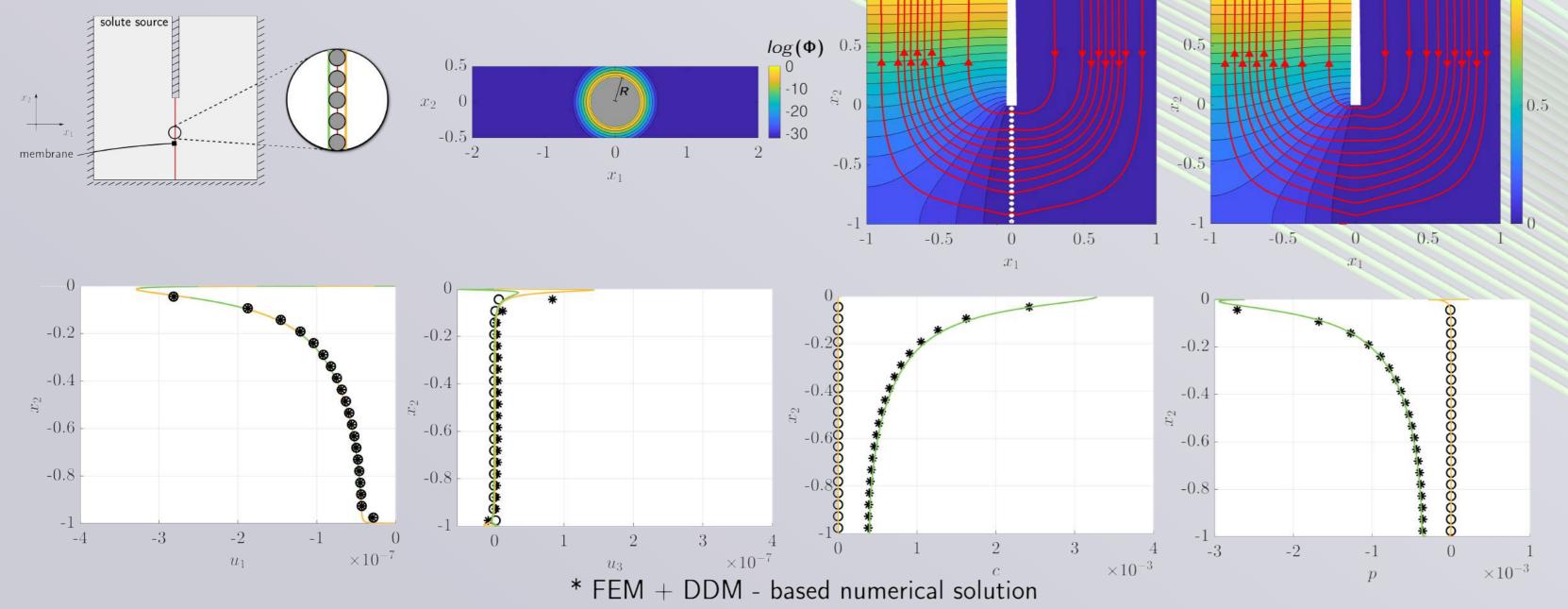
$$\begin{cases} \mathbf{u}|_{\mathbb{C}^{-}} = \mathcal{M}^{-} : \mathbf{\Sigma}|_{\mathbb{C}^{-}} + \mathcal{N}^{-} : \mathbf{\Sigma}|_{\mathbb{C}^{+}} + \alpha^{-} \mathbf{F}|_{\mathbb{C}^{-}} + \beta^{-} \mathbf{F}|_{\mathbb{C}^{+}} \\ c|_{\mathbb{C}^{-}} = \mathcal{T}^{-} \cdot \mathbf{F}|_{\mathbb{C}^{-}} + \mathcal{Y}^{-} \cdot \mathbf{F}|_{\mathbb{C}^{+}} \\ \mathbf{u}|_{\mathbb{C}^{+}} = \mathcal{M}^{+} : \mathbf{\Sigma}|_{\mathbb{C}^{-}} + \mathcal{N}^{+} : \mathbf{\Sigma}|_{\mathbb{C}^{+}} + \alpha^{+} \mathbf{F}|_{\mathbb{C}^{-}} + \beta^{+} \mathbf{F}|_{\mathbb{C}^{+}} \\ c|_{\mathbb{C}^{+}} = \mathcal{T}^{+} \cdot \mathbf{F}|_{\mathbb{C}^{-}} + \mathcal{Y}^{+} \cdot \mathbf{F}|_{\mathbb{C}^{+}} \end{cases}$$

where $\mathbf{\Sigma}|_{\mathbb{C}^{\pm}} = -\mathbf{I}p|_{\mathbb{C}^{\pm}} + \mu(\nabla \mathbf{u} + \nabla \mathbf{u}^T)|_{\mathbb{C}^{\pm}}$ and $\mathbf{F}|_{\mathbb{C}^{\pm}} = \mathbf{u}c - D\nabla c$ are the solvent stresses and solute fluxes and \mathcal{M}^\pm , \mathcal{N}^\pm , α^\pm , α^\pm , β^\pm , \mathcal{T}^\pm and \mathcal{Y}^\pm are upward (\cdot^-) and downward (·+) spatial averages of microscopic quantities, representing effective properties of the membrane. These quantities, computed once and for all for a given membrane within the microscopic elementary cell, allow a predictive determination of the mobility matrix. The macroscopic conditions, valid on \mathbb{C}^{\pm} , quantify jumps in the solvent velocity, pressure, and stresses and in the solute concentration and fluxes.

Predictive macroscopic modelling of osmotic flows*

► Test case: U-shaped container split by a membrane at $Re = \frac{\rho Ul}{ll} = 0 = Pe = \frac{Ul}{D}$ and

$$\Phi = A(1 - \tanh \frac{\sqrt{x_t^2 + x_n^2} - R}{\delta}), A = 10, \delta = 10^{-3}.$$



References

- [1] Zampogna, Gallaire 2020 JFM, 892, A9.
- [2] Ledda, Boujo, Camarri, Gallaire, Zampogna 2021 JFM, 927 A31.
- [3] Zampogna, Ledda, Gallaire 2022 PoF, 34, 083113.
- [4] Zampogna, Ledda, Wittkowski, Gallaire 2023 JFM, 970, A39.

Conclusion & Perspectives

- We developed and validated an effective macroscopic model describing osmotic flows across thin microstructured porous membranes
- We know the link between the mobility matrix and the microscopic membrane properties, i.e. we can implement objective-based optimization strategies (done for the hydrodynamics problem in [2])
- Extension to electro-osmosis and to membranes with (sub-)nanoscopic pores are foreseen
- Establish a link between our model and the Spiegler-Kedem-Kaltchalsky equations

