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Nature’s	strategy		
Nature is never regular. Lines are 
not straight, surfaces are not 
smooth and the fact that Earth is a 
geoid is only an approximation. 
The degree of irregularity is a 
matter of perspective.  
To observe things from a 
microscopic point of view 
necessarily leads to the 
conclusions above, which 
complicate issues when dealing, 
for instance, with fluid-structure 
interaction phenomena. If we 
imagine to have to simulate the 
flow  over a surface characterized 
by elastic, microstructured 
protrusions, we need to calculate 
the fluid pressure and velocity in 
each interstice between the 
structures, plus the deformation of 
each structure, taking into account 
how fluid and solid interact. How 
convenient would it be to 
transform an irregular surface into 
a homogeneous region ruled by 
modified macroscopic equations, 
without any loss of information relative to the microstructure? This is the scope of the present thesis, where a multiple 
scale approach is adopted to yield macroscopic equations which govern the interaction between a pure fluid region (F) 
and a homogenized, poroelastic medium (H).	
	
An	effective	set	of	equations	
A homogenization, multiple scale technique (cf. [1, 2] for a more extensive explanation) is used to obtain the effective or 
macroscopic model. The unknowns are the fluid velocity 𝒖, the pressure 𝑝 and the displacement of the structure 𝒗; they 
must be intended as quantities which vary only over the macroscale, since they are averaged as explained in the caption 
of fig. 2. The effective balance equations on H are: 
 

1 − 𝜗 𝒗 = 𝛻 ⋅ 𝓒 ∶ 𝜺 𝒗 − 𝛼𝑰𝑝 ,																																																																				(1𝑎)
𝛻 ⋅ 	𝜼 𝑝 − 	𝛻 ⋅ 	𝓚 ⋅ 𝛻	𝑝 = 	 𝛻 ⋅ 𝝌 : 𝜺 𝒗 − 𝜗𝛻 ⋅ 𝒗, 																														 (1𝑏)
𝒖 − 	𝜗	𝒗 = 	−𝓚 ⋅ 𝛻	𝑝,																																																																																						(1𝑐)

	

 
where	𝓚,	𝓒,	𝜶,	𝜼,	𝝌	are tensors deduced from the solution of problems over V, defined in fig. 2. The porosity 𝜗 is defined 
as the void fraction within V; (1𝑎) is the governing equation for the displacement; (1𝑏) links the	fluid pressure to the 
displacement and (1𝑐), a generalization of Darcy’s law, allows to calculate the fluid velocity once 𝑝 and 𝒗 are found. As 
the name of the technique suggests, the mathematical hypotheses on which system (1) is	based,	 are valid only in a 
homogeneous region, “far” from the macroscopic boundaries of the poroelastic domain.																																																																											

Abstract:	
In	Nature,	fluid-structure	interactions	are	often	characterized	by	separation	of	scales,	due	to	the	presence	of	small-
scale	roughness	or	deformable	irregularities	present	on	macroscopic	surfaces.	It	is	the	case,	for	instance,	of	the	
scales	which	 cover	 the	wings	 of	 the	 butterflies	 or	 the	 shark’s	 skin,	 the	barbules	which	 characterize	 the	 owl’s	
feathers	or	the	microscopic	protrusions	present	on	the	surface	of	lotus’	leaves.	A	way	to	bypass	the	complexity	of	
fine-grained	 numerical	 simulations	 is	 to	 consider	 macroscopic	 approaches	 which	 disregard	 the	 microscopic	
properties	of	the	structure	aside	from	the	presence	of	effective	tensorial	properties	which	results	from	the	solution	
of	 microscopic	 problems.	 This	 homogenization	 perspective	 is	 taken	 in	 the	 author’s	 thesis,	 where	 particular	
attention	is	paid	also	to	regimes	in	which	inertia	within	the	pores	is	not	negligible.	

	
	
	
	
	
	
	
	
	

Figure	 1: The flight of an owl is considered as a case to illustrate multiscale 
phenomena. A macroscopic dimension (e.g. the wingspan) is compared to the size of 
the barbules of the feathers (𝜇𝑚). The owl’s feathers are microscopically modeled as 
a poroelastic medium. The insets on the left show the feathers at two different scales, 
while on the right there are different visualizations of the flow field near the feathers. 
In the present work microscopic problems are solved to extract effective tensors which 
define the macroscopic behaviour of the flow. 



Suitable interface conditions are needed to 
couple model (1) with the Navier-Stokes 
equations which apply in the free-fluid region. A 
study of the possible interface conditions has 
been done in [1, 2]; the set of conditions 
appropriate for the poroelastic case are: 
	

𝒖 = = 𝒖>,																																									(2𝑎)
𝜮= ⋅ 𝒏	 = 𝝈> ⋅ 	𝒏,																											(2b)	

𝒏 ⋅ 𝓚 ⋅ 𝛻	𝑝= = 	
𝒦E

𝑑E
𝑃>H=,											(2𝑐)

	

 
where the superscripts F or H denote the region 
we are in. While (2𝑎, 2𝑏) are classical and 
commonly accepted conditions for 𝒖 and 𝒗, [3] 
has shown by DNS the presence of a pressure 
jump. Here the jump is quantified by equation 
(2𝑐) as in [4]: the normal to the interface 
pressure gradient inside H is proportional to the 
pressure jump (PF-H) between the F-H interface 
I, considered as a membrane of isotropic permeability 𝒦E  and thickness 𝑑E.   
 
Large-𝑹𝒆	flow	in	a	canopy	
In order to test if the way to calculate the permeability for 𝑅𝑒 larger than 𝒪 𝜖  
works reasonably well (the procedure is explained in the inset below), the present 
model has been compared with experiments in [6], where a turbulent flow 
through and near a canopy made of vertical rigid cylinders is simulated. 
Assuming a constant mixing length model [5], we find an analytical form for the 
velocity in the pure fluid region. In the canopy, eq. 1c  is valid (the term 𝜗	𝒗 
disappears since the cylinders are rigid). The entire profile can be seen in fig. 3, 
plotted against experimental results. A posteriori evaluation of 𝓚 (deduced from 
the measurements of 𝒖 and 𝛻𝑝 by inverting 1𝑐) shows that model (3) gives 
results in acceptable agreement with the literature (cf. figs. 4 and 5). 
	
Poroelastic	coatings  
While the first application presented was a steady case related to hydrodynamics, 
an unsteady application in aerodynamics is proposed next. A channel flow, 
forced by an oscillating pressure gradient, is studied (cf. [1, 8] for details). The 
lower half of the channel is covered by a poroelastic layer of polyurethane foam, 
whose microstructure is represented in fig. 7 together with some components of 𝝌. The disturbances generated by the 
medium are studied. Fig. 8 shows the vortical structures which arise in the interfacial zone and influence a non-negligible 
part of the fluid domain. 

	
	
	
	
	
	
	
	
	

Figure	2:	In the present problem, 
two macroscopic regions can be 
identified: a pure fluid region and 
a region occupied by a 
poroelastic medium. If the solid 
skeleton is periodically micro-
structured, in the poroelastic 
medium we can identify an 
elementary cell 𝑉, divided into 
two phases: the solid 𝑉Q and the 
fluid 𝑉> . The hypothesis   needed	
to apply homogenization is that 𝜖 = R

S
≪ 1, where 𝑙 and 𝐿 are, 

respectively, the characteristic macroscopic and microscopic 
dimensions. This leads us to the definition of an average over 𝑉, 
denoted with 〈⋅〉, thanks to which the unknowns, once averaged, are 
defined on the H domain where there is no distinction between 𝑉Q and 
𝑉> . Different flow regimes can be identified on the basis of 𝑅𝑒 = 𝑈𝑙/𝜈, 
with	𝜈 the fluid viscosity and 𝑈 the reference macroscale velocity. 
 

	

Figure	 3:	Full profiles of 〈𝑢]〉 for 
four different experiments (using the 
notations in [6]). The symbols 
represent the experiments, the solid 
lines the analytical solution 
computed in [5]. 
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		The	effective	permeability	tensor 𝓚		
The effective permeability represents the property of a porous medium to be 
permeated by a fluid. It is a canonical physical quantity postulated in [7]. For 𝑅𝑒 =
𝑂(𝜖), it is found solving a Stokes problem over 𝑉> . In case of larger 𝑅𝑒, 𝓚 is not 
an 
	 an intrinsic property of the medium, but  depends 

on the flow regime, so that the Stokes problem 
is forced by a term which depends on 𝑅𝑒: 
 
_𝛻	𝑨	 − 𝛻

a𝑲 = 𝑰 − 𝑅𝑒𝑼 ⋅ 𝛻𝑲	,
𝛻 ⋅ 𝑲 = 0, 																							(3)	

(cf. [1] for the mathematical development). The 
macroscopic behavior of 𝓚 = 〈𝑲〉 is 
summarized by figs. 4 and 5. They show that  𝓚 
is	

Figure	4:		𝓚𝟏𝟏 in case of large-𝑅𝑒, 
for 𝜗=0.96-0.99. The band is 
determined with eq. (3); the blue 
circles, with respective error bars, 
are deduced by experiments [6].  

Figure	 5:	 𝓚𝒊𝒊 in case of 
negligible 𝑅𝑒, for 𝜗=0.3-0.9. 
Blue and yellow bullets are the 
solutions of a Stokes problem over 
VF.  

is an increasing function of the porosity and a decreasing function of 𝑅𝑒𝑼, 
respectively. Since 𝑼 is a macroscopic mean velocity in H, an iterative procedure, 
between the macro and microscopic solution, must be performed to find 𝑲 (cf. [1]). 
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Conclusions	
The present thesis has focussed on finding effective properties for macroscopic models of flows through anisotropic 
porous and poroelastic media, from the numerical solution of microscopic equations, including the effect of inertia. 
Validation of the coupled problem, including a pure fluid region and a homogenized medium, have been carried out 
comparing results to DNS and to experimental data from the literature. Different kinds of interface conditions have been 
considered, highlighting the pros and cons of each.  
 

Scientific	output	
The Ph.D. work has resulted in two journal papers (refs. [2, 5]) and one paper under review (ref. [8]), a conference 
proceeding (AIMETA XXII) and four technical reports for the European project ACP2-GA-2013-334954-PEL-SKIN. 
One more paper (ref. [9]) and two conference proceedings (AIMETA XXI, ETC14) have been published on a related 
topic and a last paper is in the final stages before submission (ref. [10]). The author’s thesis has been awarded the “Best 
Ph.D Thesis” prize in fluid dynamics by the University of Genova.	
 

	

Figure	8:	Disturbance velocity (white arrows) and kinetic energy (colors) of the flow  due to the presence of a homogeneous 
medium positioned in the lower half of the channel (for 𝑥h ∈ (−1,0)). Only the pure fluid region F is shown, for six different 
instants of a periodic cycle. Periodic boundary conditions are enforced along x1. 
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Figure	6:	Non-zero components of 𝜶 for 
𝜗=0.3-1. 

Effective	quantities	related	to	the	solid	
Homogenization gives effective tensors which allow to transfer the microscopic behavior of the structure to the 
macroscopic scale. For the solid model, we solve for a third order tensor 𝝌 and a vector 𝜼, whose description can be 
found in [1, 8]. These quantities allow to define the effective porosity 𝜶, which can be seen as a modified porosity 
because of fluid pressure force: 𝜶 = 𝜗𝑰 + 〈𝑪: 𝜺(𝜼)〉, with 𝑪 the microscopic elasticity tensor determined by the type 
of material we are considering.   The effective  elasticity  tensor  
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𝓒 characterizes the 
elastic behavior of the 
solid not only on the 
basis of the material but 
also taking into account 
the geometrical shape 
of the structure. Fig. 7 
shows the non-zero 
entries of 𝓒:  
 
 

𝓒 = 〈𝑪: 𝜺(𝝌)〉 + 〈𝑪〉, 
 

 

Figure	7:	Entries of 𝓒. On the right, some components 
of 𝝌 over 𝑉Q are shown (|𝝌𝟏𝟏|, |𝝌𝟐𝟐|, |𝝌𝟏𝟐|, |𝝌𝟑𝟑| 
clockwise from top left). 

for varying 𝜗 ∈ (0.3,1) and the chosen shape (right) of the microstructure.  
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