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SUMMARY. Nonlinear three-dimensional coherent structures in a parallel boundary layer flow are
presented. The solutions are discovered using the self-sustaining process (F. Waleffe,Phys. Fluids
9, pp. 883-900, 1997). Using this technique a body force is added to the Navier-Stokes equations;
the relevant solutions are discovered through performing acontinuation in the amplitude of the body
force to render it of vanishing amplitude. Some solutions found have a spanwise spacing between
the low speed streaks of the same value as has been observed inexperimental turbulence.

1 INTRODUCTION
Turbulence and the transitional phase is usually a problem for engineering applications due to

high skin friction and large pressure fluctuations, thus decreasing the fluid transport and may also
cause damage due to vibrations. Understanding this phenomena would prove much helpful for any
practical or everyday occurrence of fluid dynamics and may lead to ideas on how to control it. Even
though the past twenty years have witnessed progress on understanding transition to turbulence, the
reason for the long time-span in making advancement on this field of research, from the original
experiments by Osborne Reynolds in 1883 [1], to the incomplete understanding of today, is related
to the nonlinearity of the momentum equations. In the end of the 19th century Henri Poincaré
[2] had established that chaotic dynamics is generated by the interplay of locally unstable states
and the interweaving of their global stable and unstable manifolds. Some first important step on
how a fluid flow becomes turbulent were laid by the theory of Landau [3]. Here to describe the
route of transition to turbulence the laminar flow is thoughtto go through an infinite sequences
of bifurcations or sudden changes, giving rise to increasingly complex states with increasing flow
speed. Later it was shown by Ruelle and Takens [4] that turbulence can ensue after only a finite
number of bifurcations, also observed in the experiments byGollub and Swinney [5]. Today there
is a consensus that information on turbulent dynamics can beextracted from the continuity equation
and Navier-Stokes equations. Although the appearance of turbulent flow is chaotic it actually has a
degree of regularity which makes it possible to study the transition to turbulence by searching for
simple nonlinear solutions, called ECS for exact coherent structures, to the Navier-Stokes equations.
These solutions correspond to large scale organized patterns appearing as wavy, low velocity streaks,
flanked by staggered streamwise vortices; a classical experimental observation are the wavy unstable
structures observed in turbulent boundary layers [6]. The linear perturbation of the ECS has usually
only a few unstable dimensions and many stable ones, this quality makes it impossible for the flow
to settle onto the ECS and the instability causes the flow to bounce back and forth between these
nonlinear solutions. This idea has been reinforced by experiments on pipe flow [7] and numerical
nonlinear ECS [8, 9], suggesting that transitional flows areorganised around unstable periodic states.

1



It is ideas from dynamical systems, and in particular an approach called the periodic orbit theory
([10], [11]), that motivates the search of the ECS. The essence behind this theory is that chaotic
solutions can appear like the periodic ECS and that turbulent statistics can be reproduced by an
expansion of the exact solutions. The question is then if theECS may be the building blocks of a
transitional or turbulent flow. We present ECS for the parallel boundary layer flow, where the idea
of the self-sustaining process is used [12]. This techniquebenefits from an artificial forcing function
for driving three-dimensional nonlinear structures.

2 DEFINITIONS
An isothermal boundary layer flow over a flat plate with zero inclination is studied. We present

the analysis and results of nonlinear exact coherent structures of the Navier-Stokes equations and the
continuity equation. The steady laminar state is the well known Blasius flowU=U(x, y)i+V (x, y)j.
The cartesian coordinatesx, y andz refer to the streamwise, vertical and spanwise coordinate,with
the corresponding unit vectorsi, j andk. The velocity vector is described by the streamwise, wall-
normal and spanwise components oru=ui+vj+wk, p the pressure,ν kinematic viscosity and time
t. The plate is of infinite length in the streamwisex-direction and the spanwisez-direction, and is
located at the wall-normal coordinatey=0. All free-stream parameters use the∞ as a subscript. The
governing equations are non-dimensionalised by the unidirectional free-stream speedU∞, density
ρ and the boundary layer length scaleδ=(νx/U∞)1/2. The non-dimensionalised Navier-Stokes
equations and the continuity equation are:

ut + ∇p − ν

U∞δ
∇2

u + (u.∇)u = 0, (1)

∇.u = 0, (2)

where theU∞δ/ν is the Reynolds numberRe andRex=Re2. The truncated computational outer
edge is set toy∞=40.

2.1 The laminar Blasius flow
To define the base flow we use the parallel flow assumption (i.e.V (x, y)≡0) of the two-

dimensional laminar Blasius solution, with no pressure gradient imposed. Solving the Blasius
boundary layer equationfηηη + 1

2ffηη=0 we getU(y)=fη, wheref=f(η) andfη=df/dη with the
boundary conditionsf(0)=0, fη(0)=0 andfη(ηmax)=1. Theη is the non-dimensional self-similar
coordinate and is defined asη=y[U∞/(νx)]1/2 according to the work by Blasius [13]. To still solve
the Blasius equation exactly a forcing (= −Re−1Uyy(y)) needs to be added to the streamwise mo-
mentum equation to compensate for the assumed approximation [14, 15].

2.2 The perturbation equations
To find three-dimensional exact coherent structures to the Navier-Stokes equations we perform

a bifurcation study. For this we add a perturbationu
′ = (u′, v′, w′) andp′ on the uni-directional

laminar base flow, leading to the total flowu = U i + ǫu′, whereǫ is an amplitude to be determined.
Rather than searching for solutions bifurcating from the laminar Blasius flow, different solutions are
discovered by adding a body forcef(y, z) with an amplitudefA to the Navier-Stokes equations, to
force nonlinear three-dimensional solutions. Thef is constructed from the continuity equation with
the correct boundary conditions imposed. The governing equations of the perturbation are:

u
′

t + ∇p′ − 1

Re
∇2

u
′ + (Kp

df

dη
.∇)u′ + (u′.∇)Kp

df

dη
+ ǫu′.∇u

′ − fAf = 0, (3)
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∇.u′ = 0. (4)

The amplitudeKp is explained below. We set the flow to be perturbation-free inthe free-stream or
u=(1,0,0) and no-slip aty=0, i.e.u(t, x, y = 0, z)=0. To ensure invariant flow in the free-stream the
additional boundary conditions to be imposed are asymptotically decaying disturbances at the outer
edge of the computational domain, oru

′→0 asy→∞. The perturbation equations are separable in
x, z andt sinceU is a function ofy only. We assumeu′ to be a travelling wave expressed as:

u
′ =

NX
∑

b=−NX

NZ
∑

j=−NZ

ũ
(bj)(y)eIjβzeIbα(x−ct) (5a)

=

NX
∑

b=−NX

NZ
∑

j=−NZ

NY
∑

i=0

ûbjiTi(γ(y))eIjβzeIbα(x−ct), (5b)

with the imaginary unitI =
√
−1, α andβ real wave numbers, theTi is the Chebyshev polynomial

andγ a mapping ofy onto the domain−1 ≤ γ ≤ +1. Thec = cr + Ici is a complex eigenvalue
which is forced real for the nonlinear study. Viewing the system in a frame of referencex−crt → X
moving with the wave speedcr we arrive at a time-independent problem or∂t → −cr∂X . The
ũ(0,0)(y) mode seen in equation 5 requires some extra attention since it is the one mode that does
not decay exponentially to zero, and is thus finite aty=y∞. To satisfy the free-stream conditions
shown above the Blasius flow is used to compensate for that in order to ensureu = (1, 0, 0). The
particular condition to be imposed is:

Kp + ǫũ(0,0)(y = y∞) = 1 (6)

and can be realised by decomposing the laminar flow asU(y) = (1+ǫK)fη(η) = Kpfη(η) and then
impose the free-stream condition. For laminar flow and infinitesimal disturbances we haveKp=1
and for finite amplitude perturbationsKp 6=1 [14, 15, 16, 17]. For engineering applications one can
use the skin frictioncf to relate the nonlinear solutions to laminar and turbulent flows. Formulas
for the skin friction coefficient are presented below. The theoretical formula ofcf for the laminar

flow is the Blasius law 0.664/Re=0.664Re
−1/2
x (see e.g. Schlichting [18]); for turbulent flow the

theoretical skin friction coefficient is given by Prandtl [19] and von Karman [20]; for experimental
data of turbulence the formula of Dhawan [21] is used:

cf = 0.0576Re−1/5
x , (7a)

cf = 0.0277Re−1/7
x , (7b)

c
−1/2
f = −0.91 + 5.06 log10

√

Rexcf . (7c)

The spanwise spacingz+=zuτ/ν between low speed streaks has proved to have a value of 100 [22],
and can be used to determine the relevance of the nonlinear solutions discovered. Theuτ is the
friction velocity and is defined in terms of the wall stress and the density as(τ/ρ)1/2.

3 NUMERICAL RESULTS
We present three-dimensional nonlinear exact coherent structures (ECS) with the aim to get

insight on their relevance to the transition to turbulence.The following symmetry is imposed:

Z : (u, v, w, p)(x, y, z, t) = (u, v,−w, p)(x, y,−z, t). (8)
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Figure 1: Continuation infA from a finite value to the two solutions where it vanishes, pointed out
by the black circles. Theǫ is an amplitude of the solution.
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Figure 2: The velocity field (mean overx) of the ECS at(α, β,Re)=(0.20, 0.728, 400). The contour
levels represent the streamwise velocityu and range between min(u) and max(u) in steps of 0.0045.
The arrows refer to the cross-stream velocity. The color coding goes from most negative (dark) to
most positive (light). The (min(u), max(u))=(-0.0372, 0.0089), (min(v), max(v))=(-4.81e-4, 7.86e-
4) and (min(w), max(w))=(-0.0011, 0.0011). The figure shows the mean flow in the shape of a
four-vortex structure near the wall. The thickness of the Blasius boundary layer flow corresponds to
y=5.

With symmetryZ imposed and no symmetry iny gives the following numerical representation:
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eIbα(x−ct) + c.c (9)

where the c.c is the complex conjugate. The critical Reynolds number for linear instability is around
302 at a spanwise wave numberβ equal to zero and the streamwise wave numberα=0.18. This is
the point where Tollmien-Schlichting waves can start to grow. To stay close to that flow situation
we fix Re=400 with the objective to bring the artificial forcingfA (see equation 3) to a vanishing
amplitude. This brings us to the unforced Navier-Stokes equations. The bifurcation diagram in
figure 1 shows how two solutions can be obtained by bringingfA to zero. Having reachedfA=0 the
parameter space is explored, still keepingRe=400. Moving inβ for fixed α=0.20 it is found that
the turbulent valuez+=100 is obtained forβ=0.728. The mean flow (overx) of that solution is
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Figure 3: The real eigenfunctions (the imaginary part is identical to zero) of thex-independent
part of the perturbation (Fourier modeb=0) atRe=400,α=0.20 andβ=0.728. The selected Fourier
modes inz arej=0, 1 and 2 (see equation 5), assumed to be the dominant ones. The thickness of the
Blasius boundary layer flow corresponds toy=5 and can be used as a reference to realise where in
the boundary layer the viscous non-zero part of the eigenfunctions is situated. Thej 6=0 modes are
confined more or less within that layer, while thej=0 mode does not decay with increasing distance
from the plate asy→∞.

presented in figure 2 showing a four-vortex flow next to the plate. The eigenfunctions of the same
solution are shown in figure 3 and 4. Figure 3 shows thex-independent part of theu-component
of the perturbation, while figure 4 represents the corresponding x-dependent component. In figure
3 one also gets insight on the additional condition imposed for theKp shown in equation 6. Here
it is seen the finite value of thej=0-mode asy→∞. To ensure the correct boundary conditions at
the outer edge of the flow domain theKp is adjusted accordingly. Figure 5 shows the skin friction
mapped out inβ for α=0.16, 0.20 and 0.33, together with the laminar value and that for turbulent
flow of Prandtl (see equation 7a). The turbulent value is included only as a reference, even though
it is questionable if it is valid at this low transitional Reynolds number. We see a general trend of an
increasingcf with increasingα. For all 3α’s it is observed that the solutions are situated fairly close
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Figure 4: The real and the imaginary eigenfunctions atRe=400,α=0.20 andβ=0.728. The selected
Fourier modes areb=1 andj=0, 1 and 2 (see equation 5), assumed to be the dominant ones ofthe
x-dependent part of the ECS. The thickness of the Blasius boundary layer flow corresponds toy=5
and can be used as a reference to realise where in the boundarylayer the viscous non-zero part of the
eigenfunctions is situated. Thej 6=0 modes are clearly within that layer while thej=0 mode decays
slower but still towards zero asy→∞.

to the laminar state rather than moving towards the turbulent value. Higher values of theRe might
change the dependence of thecf with β. This has not been considered here since we are interested in
a transitional flow close to the linear critical point. The solution in figure 2 is especially interesting
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Figure 5: The skin frictioncf as a function ofβ for Re=400 and 3 values of the streamwise
wavenumberα, pointed out in the legends. As a reference thecf according to Prandtl is added
(see equation 7a) and corresponds to the top dashed line, together with the laminar value (the lower
horisontal dashed line).
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since it corresponds toz+=100, a value observed in experimental turbulence, but alsoin studies on
the transition (Biau [23]). Keepingz+ fixed at 100 a whole family of solutions is found, mapped out
in the wave number space forRe fixed, for example atα=0.16 andβ=0.733.

4 CONCLUSIONS
Nonlinear solutions are presented where some are more interesting than others, having their span-

wise spacingz+ in mind. The solutions discovered are one kind of solutions in a hierarchy of exact
solutions to the Navier-Stokes equations, and may be important flow structures to be incorporated
in an approach for understanding turbulence called the periodic orbit theory ([10], [11]). In this
theory these exact solutions are believed to form the skeleton of chaotic dynamics. Mapping out the
solutions in parameter space, e.g. in wave length space, fixing z+=100 and the Reynolds number
to a transitional value gives us the relevant solutions admitted by the Navier-Stokes equations, and
may constitute a part of the necessary solutions for giving amacroscopic description of a transitional
boundary layer flow over a flat plate.
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[19] Prandtl L., ”Über den reibungswiderstand strömender Luft,”Ergebnisse der Aerodynamischen
Versuchsanstalt zu G̈ottingen, 3, 15 (1927).
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